Applications of the Intermediate Value Theorem Name Student ID

Consider two firms A and B.

- When A chooses to produce x units of commodity, B's best response is producing y = f(x) units which gives itself maximum profit. When B chooses to produce y units of commodity, A's best response is producing x = g(y) units which gives itself maximum profit. Usually the best response functions, f(x) and g(y), are continuous.
- We are looking for a Nash equilibrium, (\bar{x}, \bar{y}) , such that $\bar{y} = f(\bar{x})$ and $\bar{x} = g(\bar{y})$ which means that both A and B are best responding to the other's strategy.
- The Intermediate Value Theorem can help us to show that a Nash equilibrium exists!!

Exercise:

Suppose that there are two oligopolists, A and B, producing x and y units of a commodity, respectively. The price of the commodity is

$$P(x,y) = 80 - \frac{1}{4}(x+y).$$

The cost function for A is

$$C_1(x) = 4x + 100.$$

The cost function for B is

$$C_2(y) = 3y + 125.$$

A has revenue $P(x, y) \cdot x$ and B has revenue $P(x, y) \cdot y$. The profit is revenue minus cost.

- 1. Write down the profit for A and B. The profit of A is $x \cdot p(x,y) - C_1(x) = 80x - \frac{x}{4}(x+y) - 4x - 100$ $= -\frac{1}{4}x^2 + 76x - \frac{1}{4}xy - 100$ The profit of B is $y \cdot p(x,y) - C_2(y) = 80y - \frac{y}{4}(x+y) - 3y - 125$ $= -\frac{1}{4}y^2 + 77y - \frac{1}{4}xy - 125$
- 2. To find the best response function of A, view the profit of A as a polynomial of x with degree 2 and y as a constant. Complete the square and find x_{max} to maximize profit. x_{max} which depends on y is the best response function of A, which we denote as g(y).

$$-\frac{1}{4}x^{2}+76x-\frac{1}{4}xy-100 = -\frac{1}{4}(x^{2}+xy-304x)-100$$

= $-\frac{1}{4}[x+(\frac{y}{2}-15z)]^{2}-100+\frac{1}{4}(\frac{y}{2}-15z)^{2}$
The maximum profit occurs at $x_{max} = 152-\frac{y}{2}$.
Hence $g(y) = 15z - \frac{y}{2}$.

3. Similarly, find the best response function of B, $y_{max} = f(x)$.

$$-\frac{1}{4}y^{2}+77y-\frac{1}{4}xy-125 = -\frac{1}{4}(y^{2}+xy-308y)-125$$

= $-\frac{1}{4}[y+(\frac{x}{2}-154)]^{2}-125+\frac{1}{4}(\frac{x}{2}-154)^{2}$
The maximum profit occurs at $y_{max} = 154-\frac{x}{2}$.
Hence $f(x) = 154-\frac{x}{2}$.

4. Let A and B each be able to produce at most 160 units. Is there a Nash equilibrium (\bar{x}, \bar{y}) where $0 \le \bar{x}, \bar{y} \le 160$?

Solve the system of equations $\begin{cases} \bar{x} = g(\bar{y}) = 152 - \frac{1}{2}\bar{y} \\ \bar{y} = f(\bar{x}) = 154 - \frac{1}{2}\bar{x} \end{cases} \xrightarrow{x + \frac{y}{2}} = 154 \xrightarrow{x} \bar{y} = 104$

 $(\overline{x}, \overline{y}) = (100, 104)$ is a Nash equilibrium.

5. In general, suppose that best response functions f(x) and g(y) are continuous and there is some interval $[\alpha, \beta]$ such that the ranges of f and g on $[\alpha, \beta]$ are still contained in $[\alpha, \beta]$. Show that there exists a Nash equilibrium (\bar{x}, \bar{y}) such that $\alpha \leq \bar{x}, \bar{y} \leq \beta$. (Hint: Show that the function $g \circ f$ has a fixed point $x_0 \in [\alpha, \beta]$, i.e. $g(f(x_0)) = x_0$, by the intermediate value theorem. Hence, $(\bar{x}, \bar{y}) = (x_0, f(x_0))$ is a Nash equilibrium.)

Consider the function h(x) = g(f(x)) - x.

": f(x) and g are continuous function with domain [x, B] and range C [x, B].

Moreover, since the range of g is contained in
$$[\alpha, \beta]$$
, we have $\alpha \leq g(f(\alpha)) \leq \beta$ and $h(\alpha) = g(f(\alpha)) - \alpha \geq 0$.

Similarly,
$$\alpha \in g(f(\beta)) \leq \beta$$
 and $h(\beta) = g(f(\beta)) - \beta \leq o$.

If has=0 or h(B)=0, then a or B is a fixed point

of g(f(x)). If $h(\alpha) > 0$ and $h(\beta) < 0$, then by the intermediate value theorem, there is some $x_0 \in [\alpha, \beta]$ such that $h(x_0) = 0$ i.e. x_0 is a fixed point of g(f(x)).

Thus g(f(x)) must have a ² fixed point on [x, B], say x_0 . Then let $y_0 = f(x_0)$. We have $g(y_0) = g(f(x_0)) = x_0$ and $y_0 = f(x_0)$ which means that (x_0, y_0) is a Nash equilibrium.